Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 836: 37

Answer

1964 years

Work Step by Step

Consider the exponential decay function, $P\left( t \right)={{P}_{0}}{{e}^{-kt}}$ …… (1) Hence, the seed lost 21% carbon-14 from its initial, so the remaining carbon-14 is 79%. Therefore, put $k=0.00012$ and $0.79{{P}_{0}}$ at the place of $P\left( t \right)$in equation-1 as, $\begin{align} & P\left( t \right)={{P}_{0}}{{e}^{-kt}} \\ & 0.79{{P}_{0}}={{P}_{0}}{{e}^{-0.00012t}} \\ & 0.79={{e}^{-0.00012t}} \end{align}$ $\begin{align} & 0.79={{e}^{-0.00012t}} \\ & \ln 0.79=\ln {{e}^{-0.00012t}} \\ & -0.2357=-0.00012t \\ & 0.2357=0.00012t \end{align}$ Further simplified, $\begin{align} & 0.2357=0.00012t \\ & \frac{0.2357}{0.00012}=t \\ & 1964.3=t \\ & 1964\approx t \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.