Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 836: 35

Answer

a) The exponential decay rate $k$ is approximately equal to 0.341, and the equation for the exponential decay function is $P\left( t \right)=15.5{{e}^{-0.341t}}$. b) 5.6 micrograms/milliliter. c) 4 hours. d) 2 hours.

Work Step by Step

a) Consider the exponential decay function, $P\left( t \right)={{P}_{0}}{{e}^{-kt}}$ …… (1) Now, put 11 at the place of $P\left( t \right)$ and 1 at the place of $t$ in equation-1: $11={{P}_{0}}{{e}^{-k\left( 1 \right)}}$ …… (2) Again, put 2 at the place of $P\left( t \right)$ and 6 at the place of $t$ in equation-1: $2={{P}_{0}}{{e}^{-k\left( 6 \right)}}$ …… (3) Here, the number of equations is 2, and also the number of unknowns is 2, so solve these two equations and find out the unknowns of the equation as, $\begin{align} & 11={{P}_{0}}{{e}^{-k\left( 1 \right)}} \\ & 11={{P}_{0}}{{e}^{-k}} \\ & 11{{e}^{k}}={{P}_{0}} \end{align}$ And $\begin{align} & 2={{P}_{0}}{{e}^{-k\left( 6 \right)}} \\ & 2={{P}_{0}}{{e}^{-6k}} \\ & 2{{e}^{6k}}={{P}_{0}} \end{align}$ Now, use substitution and solve for $k$ as, $11{{e}^{k}}=2{{e}^{6k}}$ $\begin{align} & 11{{e}^{k}}=2{{e}^{6k}} \\ & \ln 11{{e}^{k}}=\ln 2{{e}^{6k}} \\ & \ln 11+\ln {{e}^{k}}=\ln 2+\ln {{e}^{6k}} \\ & \ln 11+k=\ln 2+6k \end{align}$ Further simplified, $\begin{align} & \ln 11+k=\ln 2+6k \\ & \ln 11-\ln 2=6k-k \\ & \ln 11-\ln =5k \\ & \frac{\ln 11-\ln }{5}=k \end{align}$ Further simplified, $\begin{align} & \frac{\ln 11-\ln 2}{5}=k \\ & \frac{2.397-0.693}{5}=k \\ & \frac{1.704}{5}=k \\ & 0.341\approx k \end{align}$ Then, the exponential decay rate is $k\approx 0.341$. $\begin{align} & 11={{P}_{0}}{{e}^{-0.341\left( 1 \right)}} \\ & 11={{P}_{0}}{{e}^{-0.341}} \\ & 11{{e}^{0.341}}={{P}_{0}} \\ & 15.5\approx {{P}_{0}} \end{align}$ Now, put the values of $k$ and ${{P}_{0}}$ in exponential decay function. Thus, the exponential decay function is $P\left( t \right)=15.5{{e}^{-0.341t}}$. Where $t$ is in hours. b) From part-(a), it is clear that the exponential decay function is $P\left( t \right)=15.5{{e}^{-0.341t}}$. Thus: $\begin{align} & P\left( t \right)=15.5{{e}^{-0.341t}} \\ & P\left( 3 \right)=15.5{{e}^{-0.341\left( 3 \right)}} \\ & P\left( 3 \right)=15.5{{e}^{-1.023}} \\ & P\left( 3 \right)=15.5\left( 0.359 \right) \end{align}$ Further simplified, $\begin{align} & P\left( 3 \right)=15.5\left( 0.359 \right) \\ & P\left( 3 \right)=5.572 \\ & P\left( 3 \right)\approx 5.6 \end{align}$ c) From part-(a), it is clear that the exponential decay function is $P\left( t \right)=15.5{{e}^{-0.341t}}$, so put 4 at a place of $P\left( t \right)$ and calculate the value of $t$: $\begin{align} & P\left( t \right)=15.5{{e}^{-0.341t}} \\ & \left( 4 \right)=15.5{{e}^{-0.341t}} \\ & \frac{4}{15.5}={{e}^{-0.341t}} \end{align}$ $\begin{align} & \frac{4}{15.5}={{e}^{-0.341t}} \\ & \ln \frac{4}{15.5}=\ln {{e}^{-0.341t}} \\ & \ln 0.258=-0.341t \\ & -1.354=-0.341t \end{align}$ $\begin{align} & -1.354=-0.341t \\ & 1.354=0.341t \\ & \frac{1.354}{0.341}=t \\ & 4\approx t \end{align}$ d) $\begin{align} & P\left( t \right)=15.5{{e}^{-0.341t}} \\ & \frac{1}{2}\left( 15.5 \right)=15.5{{e}^{-0.341t}} \\ & \frac{7.75}{15.5}={{e}^{-0.341t}} \\ \end{align}$ $\begin{align} & \frac{7.75}{15.5}={{e}^{-0.341t}} \\ & \ln \frac{7.75}{15.5}=\ln {{e}^{-0.341t}} \\ & -0.693=-0.341t \\ & 0.693=0.341t \end{align}$ Further simplified, $\begin{align} & 0.693=0.341t \\ & \frac{0.693}{0.341}=t \\ & 2\approx t \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.