Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.7 Applications of Exponential Functions and Logarithmic Functions - 12.7 Exercise Set - Page 836: 36

Answer

a) $P\left( h \right)=473{{e}^{-0.000048h}}$. b) $\text{243 lb/f}{{\text{t}}^{2}}$. c) $\text{100 lb/f}{{\text{t}}^{2}}$. d) $14,441\ \text{ft}$

Work Step by Step

a) Consider the exponential decay function, $P\left( t \right)={{P}_{0}}{{e}^{-kt}}$ …… (1) Here, the value of ${{P}_{0}}$ is $473\ \text{lb/f}{{\text{t}}^{2}}$. $P\left( h \right)=473{{e}^{-kh}}$ Now, substitute, $82,345\ \text{ft}-36,152\ \text{ft}=46,193\text{ ft}$ for $h$ and $51\ \text{lb/f}{{\text{t}}^{2}}$ for $P\left( h \right)$ and calculate the value of $k$ as, $\begin{align} & P\left( h \right)=473{{e}^{-kh}} \\ & 51=473{{e}^{-k\left( 46193 \right)}} \\ & \frac{51}{473}={{e}^{-k\left( 46193 \right)}} \end{align}$ $\begin{align} & \ln \frac{51}{473}=\ln {{e}^{-k\left( 46193 \right)}} \\ & \ln \frac{51}{473}=-k\cdot 46193 \\ & \frac{\ln \frac{51}{473}}{46193}=-k \\ & 0.000048\approx k \end{align}$ b) Consider the above expression, $P\left( h \right)=473{{e}^{-0.000048h}}$ Here, the height is equal to $50,000-36,152=13,848\ \text{ft}$, so put $h=13,848\text{ ft}$ in the above equation as, $\begin{align} & P\left( h \right)=473{{e}^{-0.000048h}} \\ & P\left( 13,848 \right)=473{{e}^{-0.000048\left( 13,848 \right)}} \\ & P\left( 13,848 \right)=473{{e}^{-0.664707}} \\ & P\left( 13,848 \right)=473\left( 0.5144 \right) \end{align}$ Further simplified, $\begin{align} & P\left( 13,848 \right)=473\left( 0.5144 \right) \\ & P\left( 13,848 \right)=243.3 \\ & P\left( 13,848 \right)\approx 243 \\ \end{align}$ c) Consider the above expression, $P\left( h \right)=473{{e}^{-0.000048h}}$ We find: $\begin{align} & P\left( h \right)=473{{e}^{-0.000048h}} \\ & 100=473{{e}^{-0.000048h}} \\ & \frac{100}{473}={{e}^{-0.000048h}} \end{align}$ $\begin{align} & \ln \frac{100}{473}=\ln {{e}^{-0.000048h}} \\ & \ln \frac{100}{473}=-0.000048h \\ & \frac{\ln \frac{100}{473}}{-0.000048}=h \\ & 32,373\approx h \end{align}$ d) Consider the above expression, $P\left( h \right)=473{{e}^{-0.000048h}}$ Here, the atmospheric pressure is being halved, so put $P\left( h \right)=\frac{1}{2}\left( 473 \right)\text{ or 236}\text{.5}$ in the above equation and calculate the value of $h$: $\begin{align} & P\left( h \right)=473{{e}^{-0.000048h}} \\ & 236.5=473{{e}^{-0.000048h}} \\ & \frac{236.5}{473}={{e}^{-0.000048h}} \end{align}$ $\begin{align} & \ln \frac{236.5}{473}=\ln {{e}^{-0.000048h}} \\ & \ln \frac{236.5}{473}=-0.000048h \\ & \frac{\ln \frac{236.5}{473}}{-0.000048}=h \\ & 14,441\approx h \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.