Answer
$-2$
Work Step by Step
By definition, $\log_{a}x=2$ means $a^{2}=x.$
Then, $\log_{1/a}x=y$ means $(\displaystyle \frac{1}{a})^{y}=x$
Substituting, $(\displaystyle \frac{1}{a})^{y}=a^{2}$
$\Rightarrow\quad (a^{-1})^{y}=a^{2}$
$\Rightarrow\quad a^{-y}=a^{2}$
$\Rightarrow\quad y=-2$
$\log_{1/a}x=-2$