Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.4 Properties of Logarithmic Functions - 12.4 Exercise Set - Page 811: 85

Answer

$\displaystyle \frac{1}{2}\log_{a}(1+s)+\frac{1}{2}\log_{a}(1-s)$

Work Step by Step

Rewrite $\sqrt{1-s^{2}}$ as $(1-s^{2})^{1/2}$ $\log_{a}\sqrt{1-s^{2}}=\log_{a}(1-s^{2})^{1/2}\qquad$ ... apply $\log_{a}M^{p}=p\cdot\log_{a}M$ $=\displaystyle \frac{1}{2}\log_{a}(1-s^{2})\qquad$ ... recognize a difference of squares $=\displaystyle \frac{1}{2}\log_{a}[(1+s)(1-s)]\qquad$ ... apply $\log_{a}(MN)=\log_{a}M+\log_{a}N$ $=\displaystyle \frac{1}{2}\log_{a}(1+s)+\frac{1}{2}\log_{a}(1-s)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.