Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.4 Properties of Logarithmic Functions - 12.4 Exercise Set - Page 811: 86

Answer

$ \displaystyle \frac{1}{2}\log_{a}(c-d)-\frac{1}{2}\log_{a}(c+d)$

Work Step by Step

$\displaystyle \log_{a}\frac{c-d}{\sqrt{c^{2}-d^{2}}}= \qquad$ ... apply $ \displaystyle \log_{a}\frac{M}{N}=\log_{a}M-\log_{a}N$ $=\log_{a}(c-d)-\log_{a}\sqrt{c^{2}-d^{2}}$ .... rewrite $\sqrt{c^{2}-d^{2}}$ as $[(c-d)(c+d)]^{1/2}$ $=\log_{a}(c-d)-\log_{a}[(c-d)(c+d)]^{1/2}$ ... apply $\log_{a}M^{p}=p\cdot\log_{a}M$ $=\displaystyle \log_{a}(c-d)-\frac{1}{2}\log_{a}[(c-d)(c+d)]$ ... apply $\log_{a}(MN)=\log_{a}M+\log_{a}N$ $=\displaystyle \log_{a}(c-d)-\frac{1}{2}\log_{a}(c-d)-\frac{1}{2}\log_{a}(c+d)$ $= \displaystyle \frac{1}{2}\log_{a}(c-d)-\frac{1}{2}\log_{a}(c+d)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.