Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - 12.4 Properties of Logarithmic Functions - 12.4 Exercise Set - Page 811: 87

Answer

$=\displaystyle \frac{10}{3}$

Work Step by Step

... apply $ \displaystyle \log_{a}\frac{M}{N}=\log_{a}M-\log_{a}N$ $\displaystyle \log_{a}\frac{\sqrt[3]{x^{2}z}}{\sqrt[3]{y^{2}z^{-2}}} =\log_{a}\sqrt[3]{x^{2}z}-\log_{a}\sqrt[3]{y^{2}z^{-2}}$ $...$ rewrite $\sqrt[3]{A}$ as $A^{1/3}$ $=\log_{a}(x^{2}z)^{1/3}-\log_{a}(y^{2}z^{-2})^{1/3}$ ... apply $\log_{a}M^{p}=p\cdot\log_{a}M$ $=\displaystyle \frac{1}{3}\log_{a}(x^{2}z) -\frac{1}{3}\log_{a}(y^{2}z^{-2})^{ }$ ... apply $\log_{a}(MN)=\log_{a}M+\log_{a}N$ $=\displaystyle \frac{1}{3}\log_{a}(x^{2})+\frac{1}{3}\log_{a}(z) -\frac{1}{3}\log_{a}(y^{2})^{ }-\frac{1}{3}\log_{a}(z^{-2})^{ }$ ... apply $\log_{a}M^{p}=p\cdot\log_{a}M$ $=\displaystyle \frac{2}{3}\log_{a}x+\frac{1}{3}\log_{a}z -\frac{2}{3}\log_{a}y-\frac{-2}{3}\log_{a}z$ $=\displaystyle \frac{2}{3}\log_{a}x-\frac{2}{3}\log_{a}y+\frac{1}{3}\log_{a}z+\frac{2}{3}\log_{a}z$ $=\displaystyle \frac{2}{3}\log_{a}x-\frac{2}{3}\log_{a}y+\log_{a}z$ Given $\log_{a}x=2, \log_{a}y=3$, and $\log_{a}z=4$ $=\displaystyle \frac{2}{3}(2)-\frac{2}{3}(3)+4$ $=\displaystyle \frac{4-6+12}{3}$ $=\displaystyle \frac{10}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.