Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 773: 32

Answer

$\left\{ \sqrt{7},-\sqrt{7},\sqrt{2},-\sqrt{2} \right\}$.

Work Step by Step

${{\left( {{x}^{2}}-4 \right)}^{2}}-\left( {{x}^{2}}-4 \right)-6=0$ Consider $u={{x}^{2}}-4$ ${{u}^{2}}-u-6=0$ Compare the above equation with $a{{x}^{2}}+bx+c=0$ $a=1$,$b=-1$ and c = -6 $u=\frac{-b\pm \sqrt{{{b}^{^{2}}}-4ac}}{2a}$ Substitute values of a, b and c in the above equation: $\begin{align} & u=\frac{1\pm \sqrt{{{\left( -1 \right)}^{2}}-4\left( 1 \right)\left( -6 \right)}}{2\left( 1 \right)} \\ & =\frac{1\pm \sqrt{1+24}}{2} \\ & =\frac{1\pm \sqrt{25}}{2} \\ & =\frac{1\pm 5}{2} \end{align}$ Further, $\begin{align} & u=\frac{1+5}{2} \\ & =\frac{6}{2} \\ & =3 \end{align}$ $\begin{align} & u=\frac{1-5}{2} \\ & =\frac{-4}{2} \\ & =-2 \end{align}$ Now substitute $u={{x}^{2}}-4$, $\begin{align} & {{x}^{2}}-4=3 \\ & {{x}^{2}}=7 \\ & x=\pm \sqrt{7} \end{align}$ Or, $\begin{align} & {{x}^{2}}-4=-2 \\ & {{x}^{2}}=2 \\ & x=\pm \sqrt{2} \end{align}$ Thus, the roots are as below, $x=\pm \sqrt{7}$ or $x=\pm \sqrt{2}$ Therefore, the values of x are $\pm \sqrt{7}$ or $\pm \sqrt{2}$ Thus, the solution set of the equation ${{\left( {{x}^{2}}-4 \right)}^{2}}-\left( {{x}^{2}}-4 \right)-6=0$ is $\left\{ \sqrt{7},-\sqrt{7},\sqrt{2},-\sqrt{2} \right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.