Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 773: 31

Answer

$3$ $or$ $-5$

Work Step by Step

$15{{x}^{-2}}-2{{x}^{-1}}-1=0$ It can be written as, $\frac{15}{{{x}^{^{2}}}}-\frac{2}{x}-1=0$ Multiply with ${{x}^{2}}$ on both the sides, $\begin{align} & 15-2x-{{x}^{2}}=0 \\ & {{x}^{2}}+2x-15=0 \\ \end{align}$ Compare the above equation with $a{{x}^{2}}+bx+c=0$ $a=1$,$b=2$ and $c=-15$ Apply the quadratic formula, $x=\frac{-b\pm \sqrt{{{b}^{^{2}}}-4ac}}{2a}$ Substitute values of a, b and c in the above equation, $\begin{align} & x=\frac{-2\pm \sqrt{{{2}^{2}}-4\left( 1 \right)\left( -15 \right)}}{2\left( 1 \right)} \\ & =\frac{-2\pm \sqrt{4+60}}{2} \\ & =\frac{-2\pm \sqrt{64}}{2} \\ & =\frac{-2\pm 8}{2} \end{align}$ Further, $\begin{align} & x=\frac{-2+8}{2} \\ & =\frac{6}{2} \\ & =3 \end{align}$ $\begin{align} & x=\frac{-2-8}{2} \\ & =\frac{-10}{2} \\ & =-5 \end{align}$ Thus, the values of x for the equation $15{{x}^{-2}}-2{{x}^{-1}}-1=0$ are 3 or -5.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.