Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 773: 18

Answer

$-\frac{1}{4}\text{ and 1}$.

Work Step by Step

$f\left( x \right)=4{{x}^{2}}-3x-1$ Now, equate the expression to $f\left( x \right)=0$ as, $4{{x}^{2}}-3x-1=0$ Now compare the equation $4{{x}^{2}}-3x-1=0$ with the standard form of the quadratic equation $a{{x}^{2}}+bx+c=0$, Therefore, $a=4,b=-3\text{ and }c=-1$ Substitute $a=4,b=-3\text{ and }c=-1$ into the quadratic formula $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$, $\begin{align} & x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} \\ & =\frac{-\left( -3 \right)\pm \sqrt{{{\left( -3 \right)}^{2}}-4\cdot 4\cdot \left( -1 \right)}}{2\cdot 4} \\ & =\frac{3\pm \sqrt{9+16}}{8} \\ & =\frac{3\pm \sqrt{25}}{8} \end{align}$ Simplify further as shown below, $\begin{align} & x=\frac{3\pm \sqrt{25}}{8} \\ & =\frac{3\pm 5}{8} \end{align}$ Thus, $x=\frac{3+5}{8}$ And, $x=\frac{3-5}{8}$ Now, consider the value $x=\frac{3+5}{8}$ and solve further, $\begin{align} & x=\frac{3+5}{8} \\ & =\frac{8}{8} \\ & =1 \end{align}$ Now, consider the value $x=\frac{3-5}{8}$ and solve further, $\begin{align} & x=\frac{3-5}{8} \\ & =\frac{-2}{8} \\ & =-\frac{1}{4} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.