Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - Review Exercises: Chapter 11 - Page 773: 28

Answer

$153 \text{mph}$.

Work Step by Step

The distance between the manufacturing plant and company headquarters is $300\,\text{mi}$. The corporate pilot must fly from headquarters to the plant and back in $4\,\text{hr}$. The speed of the air is $20-\text{mph}$ headwind and $20-\text{mph}$ tailwind. Distance: $300$ Speed: $r-20$ Then put these values in the equation $\text{time}=\frac{\text{distance}}{\text{speed}}$. Therefore, $\begin{align} & \text{time}=\frac{\text{distance}}{\text{speed}} \\ & \text{time}=\frac{\text{300}}{r\text{-20}} \end{align}$ Distance: $300$ Speed: $r+20$ Then put these values in the equation $\text{time}=\frac{\text{distance}}{\text{speed}}$. Therefore, $\begin{align} & \text{time}=\frac{\text{distance}}{\text{speed}} \\ & \text{time}=\frac{300}{r+20} \end{align}$ Now form the equation: $\begin{align} & \frac{\text{300}}{r\text{-20}}+\frac{\text{300}}{r\text{+20}}=4 \\ & \frac{300\left( r-20 \right)+300\left( r+20 \right)}{\left( r-20 \right)\left( r\text{+20} \right)}=4 \\ & \frac{300r-6000+300r+6000}{\left( r-20 \right)\left( r\text{+20} \right)}=4 \\ & \frac{300r+300r}{\left( r-20 \right)\left( r\text{+20} \right)}=4 \end{align}$ Explain further: $\begin{align} \frac{300r+300r}{\left( r-20 \right)\left( r\text{+20} \right)}=4 & \\ \frac{1200r}{\left( {{r}^{2}}-{{20}^{2}} \right)}=4 & \\ \end{align}$ Multiply by $\left( {{r}^{2}}-{{20}^{2}} \right)$ on both sides: $\begin{align} & \frac{1200r}{\left( {{r}^{2}}-{{20}^{2}} \right)}\cdot \left( {{r}^{2}}-{{20}^{2}} \right)=4\cdot \left( {{r}^{2}}-{{20}^{2}} \right) \\ & 120r=4\cdot \left( {{r}^{2}}-{{20}^{2}} \right) \\ & r\approx 153 \text{mph} \end{align}$ Therefore the plane has a speed of $r\approx 153 \text{mph}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.