Answer
$-\frac{2}{13}$
Work Step by Step
We substitute the given values into the equation to obtain:
$\frac{3a-2b-4a+7b}{-a-3a+b-2b}$
$a=-1$
$b=-\frac{1}{3}$
$\frac{3(-1)-2(-\frac{1}{3})-4(-1)+7(-\frac{1}{3})}{-(-1)-3(-1)+(-\frac{1}{3})-2(-\frac{1}{3})}=\frac{-3+\frac{2}{3}+4-\frac{7}{3}}{1+3-\frac{1}{3}+\frac{2}{3}}=\frac{-\frac{9}{3}+\frac{2}{3}+\frac{12}{3}-\frac{7}{3}}{\frac{3}{3}+\frac{9}{3}-\frac{1}{3}+\frac{2}{3}}=\frac{-\frac{2}{3}}{\frac{13}{3}}=-\frac{2}{3}\times\frac{3}{13}=-\frac{2}{13}$