Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 4 - Proportions, Percents, and Solving Inequalities - Chapters 1-4 Cumulative Review Problem Set - Page 186: 42

Answer

The solution set is {x|x $\geq$ 21} , or [21,$\infty$) in interval notation.

Work Step by Step

Use the properties of inequalities to solve this inequality. $\frac{2}{7}$x - $\frac{1}{4}$ $\geq$ $\frac{1}{4}$x + $\frac{1}{2}$ $\frac{2x}{7}$ - $\frac{1}{4}$ $\geq$ $\frac{x}{4}$ + $\frac{1}{2}$ Add $\frac{1}{4}$ to both sides. $\frac{2x}{7}$ $\geq$ $\frac{x}{4}$ + $\frac{1}{2}$ + $\frac{1}{4}$ $\frac{2x}{7}$ $\geq$ $\frac{x+1}{4}$ + $\frac{1}{2}$ The least common multiple, or LCM, of 7, 4, and 2 is 28. Multiply both sides by the LCM. $\frac{2x}{7}$ $\times$ 28 $\geq$ $\frac{x+1}{4}$ $\times$ 28 + $\frac{1}{2}$ $\times$ 28 2x $\times$ 4 $\geq$ (x + 1) $\times$ 7 + 1 $\times$ 14 Use the distributive property. 8x $\geq$ 7x + 7 + 14 Subtract 7x from both sides. x $\geq$ 21 The solution set is {x|x $\geq$ 21} , or [21,$\infty$) in interval notation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.