Answer
t = $\frac{-4}{7}$ $\approx$ -0.57
Work Step by Step
$\frac{t-2}{4}$ + $\frac{t+3}{3}$ = $\frac{1}{6}$
We need to change the denominator of each fraction to 12.
$\frac{t-2}{4}$ $\times$ $\frac{3}{3}$+ $\frac{t+3}{3}$ $\times$ $\frac{4}{4}$ = $\frac{1}{6}$ $\times$ $\frac{2}{2}$
$\frac{(t-2) \times3}{12}$ + $\frac{(t+3) \times 4}{12}$ = $\frac{2}{12}$
Multiply both sides by 12.
(t-2) $\times$ 3 + (t+3) $\times$ 4 = 2
Use the distributive property.
3t - 6 + 4t + 12 = 2
7t + 6 = 2
7t = -4
Divide both sides by 7.
t = $\frac{-4}{7}$ $\approx$ -0.57