Answer
$-\frac{1}{4}$
Work Step by Step
Using the distributive property, the given expression simplifies to:
$\frac{3a-b-4a+3b}{a-6b-4b-3a}$
=$\frac{3a-4a-b+3b}{a-3a-6b-4b}$
=$\frac{a(3-4)-b(1-3)}{a(1-3)-b(6+4)}$
=$\frac{a(-1)-b(-2)}{a(-2)-b(10)}$
=$\frac{-a+2b}{-2a-10b}$
We then substitute $a=-1$ and $b=3$ in the expression and simplify:
$\frac{-a+2b}{-2a-10b}$
=$\frac{-(-1)+2(3)}{-2(-1)-10(3)}$
=$\frac{1+6}{2-30}$
=$\frac{7}{-28}$
=$-\frac{1}{4}$