Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 9 - Solving Quadratic Equations - 9.1 - Properties of Radicals - Exercises - Page 485: 35

Answer

$-\frac{3\sqrt[3]{3y^2}}{10x}$.

Work Step by Step

The given expression is $=-\sqrt[3]{\frac{81y^2}{1000x^3}}$ Use quotient property of cube roots. $=-\frac{\sqrt[3]{81y^2}}{\sqrt[3]{1000x^3}}$ Factor as cube terms. $=-\frac{\sqrt[3]{27\cdot 3y^2}}{\sqrt[3]{1000x^3}}$ Use product property of cube roots. $=-\frac{\sqrt[3]{27}\sqrt[3]{y^2}}{\sqrt[3]{1000}\cdot \sqrt[3]{x^3}}$ Use $27=3^3$ and $1000=10^3$. $=-\frac{\sqrt[3]{3^3}\sqrt[3]{y^2}}{\sqrt[3]{1000}\cdot \sqrt[3]{x^3}}$ Simplify. $=-\frac{3\sqrt[3]{3y^2}}{10x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.