Answer
$4n^2\sqrt{3n}$.
Work Step by Step
The given expression is
$=\sqrt{48n^5}$
Factor as square terms.
$=\sqrt{16n^4\cdot 3n}$
Use product property of square roots.
$=\sqrt{16}\cdot \sqrt{n^4}\cdot \sqrt{3n}$
Use $16=4^2$.
$=\sqrt{4^2}\cdot \sqrt{n^4}\cdot \sqrt{3n}$
Simplify.
$=4n^2\sqrt{3n}$.