Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 7 - 7.5 - Multiple-Angle and Product-to-Sum Formulas - 7.5 Exercises - Page 548: 27

Answer

$cos^4x=\frac{3}{8}+\frac{1}{2}cos~2x+\frac{1}{8}cos~4x$

Work Step by Step

$sin^2x+cos^2x=1$ $cos^2x-1=-sin^2x$ $cos~2x=cos^2x-sin^2x=2~cos^2x-1$ $2~cos^2x=1+cos~2x$ $cos^2x=\frac{1}{2}+\frac{1}{2}cos~2x$ Also: $cos^22x=\frac{1}{2}+\frac{1}{2}cos~4x$ $cos^4x=(cos^2x)^2=(\frac{1}{2}+\frac{1}{2}cos~2x)^2=\frac{1}{4}+2·\frac{1}{2}·\frac{1}{2}cos~2x+\frac{1}{4}cos^22x=\frac{1}{4}+\frac{1}{2}cos~2x+\frac{1}{4}(\frac{1}{2}+\frac{1}{2}cos~4x)=\frac{1}{4}+\frac{1}{2}cos~2x+\frac{1}{8}+\frac{1}{8}cos~4x=\frac{3}{8}+\frac{1}{2}cos~2x+\frac{1}{8}cos~4x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.