Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 7 - 7.2 - Verifying Trigonometric Identities - 7.2 Exercises - Page 520: 42

Answer

The identity is verified. $\frac{cos~x-cos~y}{sin~x+sin~y}+\frac{sin~x-sin~y}{cos~x+cos~y}=0$

Work Step by Step

$\frac{cos~x-cos~y}{sin~x+sin~y}+\frac{sin~x-sin~y}{cos~x+cos~y}=\frac{cos~x-cos~y}{sin~x+sin~y}~\frac{cos~x+cos~y}{cos~x+cos~y}+\frac{sin~x-sin~y}{cos~x+cos~y}~\frac{sin~x+sin~y}{sin~x+sin~y}=\frac{cos^2x-cos^2y+sin^2x-sin^2y}{(cos~x+cos~y)(sin~x+sin~y)}=\frac{(cos^2x+sin^2x)-(sin^2y+cos^2y)}{(cos~x+cos~y)(sin~x+sin~y)}=\frac{1-1}{(cos~x+cos~y)(sin~x+sin~y)}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.