Answer
$sec~\theta=-\frac{\sqrt {58}}{3}$
$cot~\theta=\frac{3}{7}$
$csc~\theta=-\frac{\sqrt {58}}{7}$
$cos~\theta=-\frac{3\sqrt {58}}{58}$
$sin~\theta=-\frac{7\sqrt {58}}{58}$
Work Step by Step
$sec^2\theta=1+tan^2\theta=1+(\frac{7}{3})^2=\frac{58}{9}$
$sec~\theta=-\frac{\sqrt {58}}{3}$
$cot~\theta=\frac{1}{tan~\theta}=\frac{1}{\frac{7}{3}}=\frac{3}{7}$
$csc^2\theta=cot^2\theta+1=(\frac{3}{7})^2+1=\frac{58}{49}$
$csc~\theta=-\frac{\sqrt {58}}{7}$
$cos~\theta=\frac{1}{sec~\theta}=-\frac{3}{\sqrt {58}}=-\frac{3\sqrt {58}}{58}$
$sin~\theta=\frac{1}{csc~\theta}=-\frac{7}{\sqrt {58}}=-\frac{7\sqrt {58}}{58}$