Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.7 - Inverse Functions - 2.7 Exercises - Page 229: 51

Answer

a) $f^{-1}(x)=\dfrac{2x+1}{x-1}$ b) See graph c) The graph of $f^{-1}$ is the reflection of the graph of $f$ across the line $y=x$. d) $D_f=(-\infty,2)\cup(2,\infty),R_f=(-\infty,1)\cup(1,\infty)$ $D_{f^{-1}}=(-\infty,1)\cup(1,\infty),R_{f^{-1}}=(-\infty,2)\cup(2,\infty)$

Work Step by Step

We are given the function: $f(x)=\dfrac{x+1}{x-2}$ $y=\dfrac{x+1}{x-2}$ a) Determine the inverse $f^{-1}$. Interchange $x$ and $y$: $x=\dfrac{y+1}{y-2}$ $x(y-2)=y+1$ $xy-2x=y+1$ $xy-y=2x+1$ $y(x-1)=2x+1$ $y=\dfrac{2x+1}{x-1}$ $f^{-1}(x)=\dfrac{2x+1}{x-1}$ b) Graph both functions. c) The graph of the function $f^{-1}$ is the reflection of the graph of $f$ across the line $y=x$. d) Determine the domain and range of $f$: $D_f=(-\infty,2)\cup(2,\infty)$ $R_f=(-\infty,1)\cup(1,\infty)$ Determine the domain and range of $f^{-1}$: $D_{f^{-1}}=(-\infty,1)\cup(1,\infty)$ $R_{f^{-1}}=(-\infty,2)\cup(2,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.