Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.7 - Inverse Functions - 2.7 Exercises - Page 229: 47

Answer

a) $f^{-1}(x)=\sqrt{4-x^2},x\in [0,2]$ b) See graph c) The graph of $f^{-1}$ is the reflection of the graph of $f$ across the line $y=x$ d) $D_f=[0,2],R_f=[0,2]$ $D_{f^{-1}}=[0,2],R_{f^{-1}}=[0,2]$

Work Step by Step

We are given the function: $f(x)=\sqrt{4-x^2},x\in [0,2]$ $y=\sqrt{4-x^2}$ a) Determine the inverse $f^{-1}$. Interchange $x$ and $y$: $x=\sqrt{4-y^2}$ $x^2=(\sqrt{4-y^2})^2$ $x^2=4-y^2$ $y^2=4-x^2$ $y=\sqrt{4-x^2}$ $f^{-1}(x)=\sqrt{4-x^2},x\in [0,2]$ b) Graph both functions. c) The graph of the function $f^{-1}$ is the reflection of the graph of $f$ across the line $y=x$. d) Determine the domain and range of $f$: $D_f=[0,2]$ $R_f=[0,2]$ Determine the domain and range of $f^{-1}$: $D_{f^{-1}}=[0,2]$ $R_{f^{-1}}=[0,2]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.