Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.6 - Combinations of Functions: Composite Functions - 2.6 Exercises - Page 219: 42

Answer

a) $\dfrac{3}{x(x+2)}$; domain $(-\infty,-2)\cup(-2,0)(0,\infty)$ b) $\dfrac{x^2+2}{x^2-1}$; domain: $(-\infty,-1)\cup(-1,1)\cup(1,\infty)$

Work Step by Step

We are given the functions: $f(x)=\dfrac{3}{x^2-1}$ $g(x)=x+1$ Determine the domains $D_f$ and $D_g$ of the two functions: $x^2-1=0\Rightarrow x=\pm 1$ $D_f=(-\infty,-1)\cup(-1,1)\cup(1,\infty)$ $D_g=(-\infty,\infty)$ a) Find $f\circ g$ and its domain $D_{f\circ g}$: $(f\circ g)(x)=f(g(x))=f\left(x+1\right)=\dfrac{3}{(x+1)^2-1}=\dfrac{3}{x^2+2x+1-1}=\dfrac{3}{x^2+2x}=\dfrac{3}{x(x+2)}$ $x(x+2)=0\Rightarrow x=-2,x=0$ $D_{f\circ g}=(-\infty,-2)\cup(-2,0)\cup(0,\infty)$ b) Find $g\circ f$ and its domain $D_{g\circ f}$: $(g\circ f)(x)=g(f(x))=g\left(\dfrac{3}{x^2-1}\right)=\dfrac{3}{x^2-1}+1=\dfrac{3+x^2-1}{x^2-1}=\dfrac{x^2+2}{x^2-1}$ $x^2-1=0\Rightarrow x=\pm 1$ $D_{g\circ f}=(-\infty,-1)\cup(-1,1)\cup(1,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.