Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.6 - Combinations of Functions: Composite Functions - 2.6 Exercises - Page 219: 10

Answer

a) $\sqrt{x^2-4}+\dfrac{x^2}{x^2+1}$ b) $\sqrt{x^2-4}-\dfrac{x^2}{x^2+1}$ c) $\dfrac{x^2\sqrt{x^2-4}}{1+x^2}$ d) $\dfrac{(x^2+1)\sqrt{x^2-4}}{x^2}$ Domain: $(-\infty,-2)\cup(2,\infty)$

Work Step by Step

We are given the functions: $f(x)=\sqrt{x^2-4}$ $g(x)=\dfrac{x^2}{x^2+1}$ a) Determine $(f+g)(x)$: $(f+g)(x)=f(x)+g)(x)=\sqrt{x^2-4}+\dfrac{x^2}{x^2+1}$ b) Determine $(f-g)(x)$: $(f-g)(x)=f(x)-g)(x)=\sqrt{x^2-4}-\dfrac{x^2}{x^2+1}$ c) Determine $(fg)(x)$: $(fg)(x)=f(x)g)(x)=\sqrt{x^2-4}\left(\dfrac{x^2}{x^2+1}\right)=\dfrac{x^2\sqrt{x^2-4}}{1+x^2}$ d) Determine $\left(\dfrac{f}{g}\right)(x)$: $\left(\dfrac{f}{g}\right)(x)=\dfrac{\sqrt{x^2-4}}{\dfrac{x^2}{x^2+1}}=\dfrac{(x^2+1)\sqrt{x^2-4}}{x^2}$ Determine the domain of $\dfrac{f}{g}$: $\begin{cases} x^2-4\geq 0\\ x^2\not=0 \end{cases}$ The domain is: $(-\infty,-2)\cup(2,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.