Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.6 - Combinations of Functions: Composite Functions - 2.6 Exercises - Page 219: 7

Answer

a) $x^2+4x-5$ b) $x^2-4x+5$ c) $4x^3-5x^2$ d) $\dfrac{x^2}{4x-5}$ Domain: $\left(-\infty,\dfrac{5}{4}\right)\cup\left(\dfrac{5}{4},\infty\right)$

Work Step by Step

We are given the functions: $f(x)=x^2$ $g(x)=4x-5$ a) Determine $(f+g)(x)$: $(f+g)(x)=f(x)+g)(x)=x^2+4x-5$ b) Determine $(f-g)(x)$: $(f-g)(x)=f(x)-g)(x)=x^2-(4x-5)=x^2-4x+5$ c) Determine $(fg)(x)$: $(fg)(x)=f(x)g)(x)=x^2(4x-5)=4x^3-5x^2$ d) Determine $\left(\dfrac{f}{g}\right)(x)$: $\left(\dfrac{f}{g}\right)(x)=\dfrac{x^2}{4x-5}$ The domain of $\dfrac{f}{g}$ is the set of all real numbers except the zeros of $g$: $4x-5=0\Rightarrow x=\dfrac{5}{4}$ The domain is: $\left(-\infty,\dfrac{5}{4}\right)\cup\left(\dfrac{5}{4},\infty\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.