Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - 2.6 - Combinations of Functions: Composite Functions - 2.6 Exercises - Page 219: 35

Answer

a) $\sqrt{x^2+4}$; domain $(-\infty,\infty)$ b) $x+4$; domain: $[-4,\infty)$

Work Step by Step

We are given the functions: $f(x)=\sqrt{x+4}$ $g(x)=x^2$ Determine the domains $D_f$ and $D_g$ of the two functions: $x+4\geq 0\Rightarrow x\geq -4$ $D_f=[-4,\infty)$ $D_g=(-\infty,\infty)$ a) Find $f\circ g$ and its domain $D_{f\circ g}$: $(f\circ g)(x)=f(g(x))=f\left(x^2\right)=\sqrt{x^2+4}$ $D_{f\circ g}=(-\infty,\infty)$ b) Find $g\circ f$ and its domain $D_{g\circ f}$: $(g\circ f)(x)=g(f(x))=g(\sqrt{x+4})=(\sqrt{x+4})^2=x+4$ $D_{g\circ f}=[-4,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.