Answer
$\begin{pmatrix} 10 \\ 4 \end{pmatrix}=210$
Work Step by Step
Tenth row of Pascal's triangle: $1~~10~~45~~120~~210~~252~~210~~120~~45~~10~~1$
It corresponds to: $\begin{pmatrix} 10 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 5 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 6 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 7 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 8 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 9 \end{pmatrix}$ $\begin{pmatrix} 10 \\ 10 \end{pmatrix}$
So, $\begin{pmatrix} 10 \\ 4 \end{pmatrix}=210$