Answer
$a_n=25(0.2)^n$
$a_1=5$
$a_2=1$
$a_3=0.2$
$a_4=0.04$
$a_5=0.008$
Work Step by Step
$a_1=5,~~r=0.2$
The nth term of a geometric sequence:
$a_n=a_1r^{n-1}$
$a_n=5(0.2)^{n-1}=5(0.2)^n(0.2)^{-1}=\frac{5}{0.2}(0.2)^n=25(0.2)^n$
$a_2=25(0.2)^2=25(0.04)=1$
$a_3=25(0.2)^3=25(0.008)=0.2$
$a_4=25(0.2)^4=25(0.0016)=0.04$
$a_5=25(0.2)^5=25(0.00032)=0.008$