Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 11 - Review Exercises - Page 841: 74

Answer

12110

Work Step by Step

$S=\sum_{n=1}^{6}\left(n^{5}-n^{2}\right)$ (We have to find the given sum using formulas for the sums of powers of integers) $S=\sum_{n=1}^{6}\left(n^{5}-n^{2}\right)$ $=\sum_{n=1}^{6} n^{5}-\sum_{n=1}^{6} n^{2}$ $=\frac{6^{2} \cdot 7^{2} \cdot\left(2 \cdot 6^{2}+2 \cdot 6-1\right)}{12}-\frac{6 \cdot 7 \cdot(2 \cdot 6+1)}{6} = 12110$ (We compute the sum, using the formulas: $1^{2}+2^{2}+3^{2}+\ldots .+k^{2}=\frac{k(k+1)(2 k+1)}{6}$ $1^{5}+2^{5}+\ldots+k^{5}=\frac{k^{2}(k+1)^{2}\left(2 k^{2}+2 k-1\right)}{12}$ )
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.