Answer
$\displaystyle \sum_{j=0}^{5}200(1.05)^n=1360.38$
Work Step by Step
$\displaystyle \sum_{j=0}^{5}200(1.05)^n=200(1.05)^0+200(1.05)^1+200(1.05)^2+...200(1.05)^5$
There are 6 terms is this sequence.
$a_1=200(1.05)^0=200$
$r=\frac{a_2}{a_1}=\frac{200(1.05)^1}{200(1.05)^0}=1.05$
$S_n=a_1(\frac{1-r^n}{1-r})$
$S_{6}=200(\frac{1-(1.05)^{6}}{1-1.05})=200(\frac{1.05^6-1}{0.05})=1360.38$