Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 11 - 11.3 - Geometric Sequences and Series - 11.3 Exercises - Page 796: 56

Answer

$\displaystyle \sum_{n=1}^{10}(\frac{3}{2})^{n-1}=\frac{58025}{512}$

Work Step by Step

$\displaystyle \sum_{n=1}^{10}(\frac{3}{2})^{n-1}=(\frac{3}{2})^0+(\frac{3}{2})^1+...+(\frac{3}{2})^9$ $a_1=(\frac{3}{2})^0=1$ $r=\frac{a_2}{a_1}=\frac{(\frac{3}{2})^1}{(\frac{3}{2})^0}=\frac{3}{2}$ $S_{10}=a_1(\frac{1-r^n}{1-r})=1(\frac{1-(\frac{3}{2})^{10}}{1-(\frac{3}{2})})=\frac{1-(\frac{59049}{1024})}{-\frac{1}{2}}=\frac{-(\frac{58025}{1024})}{-\frac{1}{2}}=\frac{58025}{512}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.