Answer
$S_n=S_{131}=-4585$
Work Step by Step
Integers from -100 to 30: $-100, -99, -98, ..., 28, 29, 30$
That is: $a_1=-100$, $a_n=30$
$d=-99-(-100)=-99+100=1$.
Let's find $n$:
$a_n=a_1+(n-1)d$
$30=-100+(n-1)1$
$30+100=n-1$
$130=n-1$
$n=131$
$S_n=\frac{n}{2}(a_1+a_n)$
$S_{131}=\frac{131}{2}(-100+30)=\frac{131}{2}(-70)=-4585$