Answer
See below.
Work Step by Step
Plugging in the different values:
$a_1=1+4(1-1)=1+4(0)=1+0=1$
$a_2=1+4(2-1)=1+4(1)=1+4=5$
$a_3=1+4(3-1)=1+4(2)=1+8=9$
$a_4=1+4(4-1)=1+4(3)=1+12=13$
$a_5=1+4(5-1)=1+4(4)=1+16=17$
$a_5-a_4=a_4-a_3=a_3-a_2=a_2-a_1=4$, thus this is an arithmetic sequence with a common difference of $4$.