Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.5 Apply the Law of Sines - 13.5 Exercises - Skill Practice - Page 886: 23

Answer

See below

Work Step by Step

Use the law of sines: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$ First we obtain: $\frac{b}{\sin B}=\frac{a}{\sin A}\\\sin B=\frac{\sin A}{a}\times b\\\arcsin (\sin B)=\arcsin(\frac{\sin A}{a}b)\\B=\arcsin(\frac{\sin A}{a}b)\\B=\arcsin(\frac{\sin 114^\circ}{15}\times10)\\B\approx 37^\circ$ The sum of the angles of the triangle is $180^\circ$ $$A+B+C=180^\circ\\A=180^\circ-B-C\\A=180^\circ-114^\circ-37^\circ\\A=29^\circ$$ Then $\frac{a}{\sin A}=\frac{c}{\sin C}\\c=\frac{a}{\sin A}\times\sin C=\frac{15}{\sin 114^\circ}\times\sin 29^\circ\approx7.96$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.