Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.5 Apply the Law of Sines - 13.5 Exercises - Skill Practice - Page 886: 12

Answer

See below

Work Step by Step

The sum of the angles of the triangle is $180^\circ$ $$A+B+C=180^\circ\\A=180^\circ-B-C\\A=180^\circ-85^\circ-47^\circ\\A=48^\circ$$ Use the law of sines: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$ First we obtain: $\frac{b}{\sin B}=\frac{a}{\sin A}\\b=\frac{a}{\sin A}\times\sin B=\frac{19}{\sin 48^\circ}\times\sin {85}^\circ\approx25.47$ Then $\frac{a}{\sin A}=\frac{c}{y\sin C}\\c=\frac{a}{\sin A}\times\sin C=\frac{19}{\sin 48^\circ}\times\sin 47^\circ\approx18.7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.