Answer
See below
Work Step by Step
The sum of the angles of the triangle is $180^\circ$
$$A+B+C=180^\circ\\A=180^\circ-B-C\\A=180^\circ-85^\circ-47^\circ\\A=48^\circ$$
Use the law of sines:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$
First we obtain: $\frac{b}{\sin B}=\frac{a}{\sin A}\\b=\frac{a}{\sin A}\times\sin B=\frac{19}{\sin 48^\circ}\times\sin {85}^\circ\approx25.47$
Then $\frac{a}{\sin A}=\frac{c}{y\sin C}\\c=\frac{a}{\sin A}\times\sin C=\frac{19}{\sin 48^\circ}\times\sin 47^\circ\approx18.7$