Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.5 Apply the Law of Sines - 13.5 Exercises - Skill Practice - Page 886: 16

Answer

See below

Work Step by Step

Find $C$ by applying the law of sines: $$\frac{\sin C}{c}=\frac{\sin B}{b}\\\sin C=\frac{\sin B}{b}\times c\\\arcsin(\sin C)=\arcsin(\frac{\sin B}{b}\times c)\\C=\arcsin(\frac{\sin B}{b}\times c)\\C=\arcsin (\frac{\sin 56^\circ}{17}\times 14)\approx43^\circ$$ The sum of the angles of the triangle is $180^\circ$ $$A+B+C=180^\circ\\B=180^\circ-B-C\\B=180^\circ-56^\circ-43^\circ\\B=81^\circ$$ Use the law of sines: $$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{y\sin C}$$ We obtain: $\frac{a}{\sin A}=\frac{c}{\sin C}\\a=\frac{c}{\sin C}\times\sin A=\frac{14}{\sin 43^\circ}\times\sin 81^\circ\approx 20.27$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.