Answer
$\frac{4}{s}$
Work Step by Step
$\frac{8 \sqrt 7s}{2 \sqrt 7s^{3}}$
We simplify the constants $8 \div 2 = 4$
$\frac{4 \sqrt 7s}{\sqrt 7s^{3}}$
To simplify this, we cannot have a radical in the denominator.
We multiply $\frac{4 \sqrt 7s}{\sqrt 7s^{3}}$ by $\frac{ \sqrt 7s^{3}}{\sqrt 7s^{3}}$
$\frac{4 \sqrt 7s}{\sqrt 7s^{3}} \times \frac{ \sqrt 7s^{3}}{\sqrt 7s^{3}}$
$\frac{4 \sqrt 49s^{4}}{ \sqrt (7s^{3})^{2}}$
Square root of $(7s^{3})^{2}$ is $7s^{3}$ because $7s^{3}$ x $7s^{3}$ = $(7s^{3})^{2}$
$\frac{4 \sqrt 49s^{4}}{7s^{3}}$
The square root of $49s^{4}$ is $7s^{2}$ because $7s^{2}$ x $7s^{2}$ =
$49s^{4}$
$\frac{4 \times 7s^{2}}{7s^{3}}$
$7s^{2} \div 7s^{3} = s$
$\frac{4}{s}$