Answer
$120\sqrt 2x^{3}$
Work Step by Step
$10 \times \sqrt 4 \times \sqrt (3x^{3}) \times 2 \times \sqrt (6x^{3}) $
*** $ \sqrt 4$ = 2 because $2 \times 2$ = 4
$10 \times 2 \times 2 \times \sqrt (3x^{3} \times 6x^{3}) $
We multiply the constants together and the numbers in the square root rogether
$40 \sqrt 18x^{6}$
The factors of $18x^{6}$ are $9 \times 2x^{3}$
$40 \sqrt 9 \sqrt 2x^{3}$
9 is a perfect square because 3 x 3 = 9
$40 \times 9 \sqrt 2x^{3}$
$120\sqrt 2x^{3}$