Answer
$-180 \sqrt 5s^{3}$
Work Step by Step
$(-6 \sqrt 15s^{3}) \times (2 \sqrt 75) $
We multiply the constants -6 and 2. We multiply the numbers inside the square root.
$(-6)(2) (\sqrt (15s^{3} \times 75))$
$-12 \sqrt 1125s^{3}$
$1125s^{3}$ has the factors of $5s^{3} \times 225$.
$-12 \sqrt (5s^{3} \times 225)$
225 is a perfect square. Square root of 225 is 15. Because 15 x 15 = 225
$(-12)(15) \sqrt 5s^{3}$
$-180 \sqrt 5s^{3}$