Answer
$\frac{\sqrt 10x}{4x}$
Work Step by Step
$\frac{\sqrt 5}{\sqrt 4 \sqrt 2x}$
Square root of 4 is 2 because 2 x 2 = 4
$\frac{\sqrt 5}{2 \sqrt 2x}$
To simplify this, we cannot have a radical in the denominator.
We multiply $\frac{\sqrt 5}{2 \sqrt 2x}$ by $\frac{ \sqrt 2x}{ \sqrt 2x}$
$\frac{\sqrt 5}{2 \sqrt 2x} \times \frac{\sqrt 2x}{ \sqrt 2x}$
$\frac{\sqrt 10x}{2 \sqrt 4x^{2}}$
Square root of $4x^{2}$ is 11 because 2x x 2x = $4x^{2}$
$\frac{\sqrt 10x}{2 \times 2x}$
$\frac{\sqrt 10x}{4x}$