Answer
a. $A=4r^{2}$
b. $64$ sq.in.
c. $14$ in.
Work Step by Step
$a.$
The side length of the box is two radii, $2r.$
The area of a square with side length $2r$ is
$A=(2r)^{2}=2^{2}r^{2}=4r^{2}$
$b.$
If $r=4$ in,
$A=4\cdot 4^{2}=4\cdot 16=64$ sq.in.
$c.$
If $A=196,$ then
$4r^{2}=196$
$r^{2}=49$
$r=9$
So, the greatest diameter is $2r=14$ in.