Answer
$6(x-2), where$ $x\ne-2$
Work Step by Step
Given : $\frac{6x^{2}-24}{x+2}= \frac{6(x^{2}-4)}{x+2}=\frac{6(x+2)(x-2)}{x+2}$
(Since $(a^{2}-b^{2})=(a+b)(a-b)$)
$= 6(x-2)$
(After dividing out the common factor (x+2))
$6(x-2), where$ $x\ne-2$