Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 4 - Two-Dimensional Kinematics - Problems and Conceptual Exercises - Page 104: 5

Answer

$\textbf{(a)}$ $x(5\text{ s})=-55\text{ m},\quad y(5\text{ s})=31\text{ m}.$ $\textbf{(b)}$ $v_x(5\text{ s})=-22\text{ m/s};\quad v_y(5\text{ s})=6.2\text{ m/s}$ $\textbf{(c)}$ The speed only increases with time.

Work Step by Step

The position law of the uniformly accelerating particle is $x(t)=x_0+v_{x0} t+\frac{1}{2}a_x t^2;\\ y(t)=y_0+v_{y0} t + \frac{1}{2}a_y t^2.$ The velocity laws are: $v_x(t)=v_{x0}+a_xt;\\ v_y(t)=v_{y0}+a_yt.$ where $x_0$ and $y_0$ are initial $x$ and $y$ coordinates and $v_{x0}$, $v_{y0}$, $a_x$ and $a_y$ initial velocity and acceleraton projetions onto $x$ and $y$ directions, respectively. From the problem we see that: $x_0=y_0=0$ (we choose to measure time when the particle passes through the origin). Further, $v_{x0}=0$, $v_{y0}=6.2\text{ m/s}$, $a_x=-4.4\text{ m/s}^2$ and $a_y=0$. $\textbf{(a)}$ Using the given data we get $$x(5\text{ s})=0+0\cdot 5\text{ s}+\frac{1}{2}(-4.4\text{ m/s}^2)\cdot (5\text{ s})^2=-55\text{ m};\\ y(5\text{ s})=0+6.2\text{ m/s}\cdot 5\text{ s}+\frac{1}{2}\cdot 0\cdot (5\text{ s})^2=31\text{ m}.$$ $\textbf{(b)}$ Using the given data we get $$v_x(5\text{ s})=0+(-4.4\text{ m/s}^2)\cdot5\text{ s}=-22\text{ m/s};\\ v_y(5\text{ s})=6.2\text{ m/s}+0\cdot 5\text{ s}=6.2\text{ m/s}.$$ $\textbf{(c)}$ The speed, which is interpretes as the intensity of the velocity is given by $$v(t)=\sqrt{v_x(t)^2+v_y(t)^2}.$$ From the given data, we see that $v_y$ is constant, while $v_x$ increases in magnitude (it becomes 'more and more negative'). This means that the argument of the square root only increases and thus, $v$ increases with $t$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.