Answer
$ ^{120}_{50}Sn$, so unknown nucleus is nucleus of tin.
Work Step by Step
$ ^{60}_{28}Ni$
Comparing with $ ^{A}_{Z}X$
we get
$A=60$
$Z=28$
number of neutrons $N=A-Z$
$N=60-28=2$
no of neutron in nickel is $N=2$
Suppose radius of nickel nucleus is $r_{Ni}$
so from equation number 31.2
$r=(1.2\times10^{-15}m)A^{\frac{1}{3}}$
we can write for nickel
$r_{Ni}=(1.2\times10^{-15}m)A_{Ni}^{\frac{1}{3}}$
$r_{Ni}=(1.2\times10^{-15}m)\times(60)^{\frac{1}{3}}$
considering nucleus to be spherical volume of nickel nucleus
$V_{Ni}=\frac{4}{3} \pi r_{Ni}^3$
$V_{Ni}=\frac{4}{3} \pi [(1.2\times10^{-15}m)\times(60)^{\frac{1}{3}}]^3$
$V_{Ni}=\frac{4}{3} \pi (1.2\times10^{-15}m)^3\times(60)$...........equation(1)
now suppose unknown nucleus $ ^{A}_{Z}X$
has radius $r$ since it has number of nucleon as $A$
$r=(1.2\times10^{-15}m)A^{\frac{1}{3}}$
and volume of unknow nucleus is $V_{U}=\frac{4}{3} \pi r^3$
$V_{U}=\frac{4}{3} \pi [(1.2\times10^{-15}m)A^{\frac{1}{3}}]^3$
$V_{U}=\frac{4}{3} \pi (1.2\times10^{-15}m)^3A$.......equation(2)
given that unknown nucleus has twice the volume of nickel nuclei.
so $V_{U}=2\times V_{Ni}$
from equation(1) and (2) putting the value we will get
$\frac{4}{3} \pi (1.2\times10^{-15}m)^3A=2\times \frac{4}{3} \pi (1.2\times10^{-15}m)^3\times(60)$
so $A=120$
so unknown nucleus will have $A=120$ nucleons
given that number of neutron $N=70$
so $Z=A-N=120-70=50$
$ ^{120}_{50}X$=$ ^{120}_{50}Sn$