Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 31 - Nuclear Physics and Radioactivity - Problems - Page 899: 1

Answer

(a) net electrical charge of nucleus $1.312\times10^{-17}C$ (b) no of neutron in lead nucleus is $N=126$ (c) no of neutron in lead nucleus is $A=208$ (d) radius of nucleus $r=7.1099\times10^{-15}m$ (e) nuclear density $\rho=2.31289\times10^{17}kg/m^3$

Work Step by Step

$ ^{208}_{82}Pb$ Comparing with $ ^{A}_{Z}X$ we get $A=208$ $Z=82$ number of neutrons $N=A-Z$ $N=208-82=126$ no of neutron in lead nucleus is $N=126$ (a) net electric charge of the nucleus no of protons in nucleus $Z=82$ charge on 1 proton=$+e$=$+1.6\times10^{-19}C$ so $Z=82$ proton will have charge $=Z\times +e=82\times 1.6\times10^{-19}C$ so charge on nucleus $=131.2\times10^{-19}C=1.312\times10^{-17}C$ net electrical charge of nucleus $1.312\times10^{-17}C$ {b) $A=208$ $Z=82$ number of neutrons $N=A-Z$ $N=208-82=126$ no of neutron in lead nucleus is $N=126$ (C) number of nucleons $ ^{208}_{82}Pb$ Comparing with $ ^{A}_{Z}X$ we get $A=208$ no of neutron in lead nucleus is $A=208$ (d) radius of the nucleus $r=(1.2\times10^{-15}m)A^{\frac{1}{3}}$ putting $A=208$ $r=(1.2\times10^{-15}m)(208)^{\frac{1}{3}}$ $r=7.1099\times10^{-15}m$ (e)nuclear density mass of nucleus $M=Z\times$ mass of proton $+ N\times $mass of nutron $M=82\times1.672\times10^{-27}kg + 126\times 1.674\times10^{-27}kg$ $M=348.028\times10^{-27}kg$ considering nucleus as spherical volume $V=\frac{4}{3} \pi r^{3}$ $V=\frac{4}{3} \pi (7.1099\times10^{-15}m)^{3}$ $V=1504.731\times10^{-45}m^3$ density $\rho=\frac{M}{V}$ $\rho=\frac{348.028\times10^{-27}kg}{1504.731\times10^{-45}m^3}$ $\rho=0.231289\times10^{18}kg/m^3$ so nuclear density $\rho=2.31289\times10^{17}kg/m^3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.