Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 31 - Nuclear Physics and Radioactivity - Problems - Page 899: 6

Answer

Ratio(largest/smallest) of the surface areas of sphere is $35.2179$

Work Step by Step

Given largest stable nucleus has Nucleon number $A_{l}=209$ suppose largest stable nucleus has radius $r_{l}$ so from equation number 31.2 $r=(1.2\times10^{-15}m)A^{\frac{1}{3}}$ $r_{l}=(1.2\times10^{-15}m)A_{i}^{\frac{1}{3}}$ assuming nucleus to be spherical surface area of nucleus will be $(SA)_{l}=4\pi r_{i}^2$ $(SA)_{l}=4\pi [(1.2\times10^{-15}m)A_{i}^{\frac{1}{3}}]^2$ $(SA)_{l}=4\pi (1.2\times10^{-15}m)^2A_{i}^{\frac{2}{3}}$ .....equation(1) Similarly for smallest stable nucleon Given smallest stable nucleus has Nucleon number $A_{s}=1$ suppose smallest stable nucleus has radius $r_{s}$ so from equation number 31.2 $r=(1.2\times10^{-15}m)A^{\frac{1}{3}}$ $r_{s}=(1.2\times10^{-15}m)A_{s}^{\frac{1}{3}}$ assuming nucleus to be spherical surface area of nucleus will be $(SA)_{s}=4\pi r_{s}^2$ $(SA)_{s}=4\pi [(1.2\times10^{-15}m)A_{s}^{\frac{1}{3}}]^2$ $(SA)_{s}=4\pi (1.2\times10^{-15}m)^2A_{s}^{\frac{2}{3}}$ ........equation (2) on dividing equation(1) by equation(2) we will get $\frac{(SA)_{l}}{(SA)_{s}}=\frac{4\pi (1.2\times10^{-15}m)^2A_{i}^{\frac{2}{3}}}{4\pi (1.2\times10^{-15}m)^2A_{s}^{\frac{2}{3}}}$ $\frac{(SA)_{l}}{(SA)_{s}}=(\frac{A_{l}}{A_{s}})^{\frac{2}{3}}$ in this equation putting $A_{l}=209$ $A_{s}=1$ will give $\frac{(SA)_{l}}{(SA)_{s}}=(\frac{209}{1})^{\frac{2}{3}}$ $\frac{(SA)_{l}}{(SA)_{s}}=(209)^{\frac{2}{3}}=35.2179$ Ratio(largest/smallest) of the surface areas of sphere is $35.2179$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.