Answer
32.9 m/s
Work Step by Step
Let's apply Bernoulli's equation to find the wind speed.
$P+\frac{1}{2}\rho v^{2}+\rho gh= constant$
$P_{out}+\frac{1}{2}\rho v^{2}+0=P_{in}+0+0$
$P_{in}-P_{out}=\frac{1}{2}(1.29\space kg/m^{3})v^{2}-(1)$
We know that, $P=\frac{Force}{Area}$ So, we can write
$P_{in}-P_{out}=\frac{22000\space N}{(5\times6.3\space m^{2})}=698.4\space Pa-(2)$
(2)=>(1),
$v_{2}=\sqrt {\frac{2\times698.4\space Pa}{1.29\space kg/m^{3}}}=32.9\space m/s$
So, Wind speed = 32.9 m/s