Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 11 - Fluids - Problems - Page 312: 69

Answer

$(a)\space 13.87\space m/s$ $(b)\space 0.97\space m^{3}/s$

Work Step by Step

(a) Let's apply equation 11.9 $A_{1}v_{1}=A_{2}v_{2}$ for get a combination between speeds. $A_{1}v_{1}=A_{2}v_{2}$ ; Let's plug known values into this equation. $(0.05\space m^{2})v_{1}=(0.07\space m^{2})v_{2}$ $v_{1}=1.4v_{2}-(1)$ Let's apply Bernoulli's equation to the system. $P+\frac{1}{2}\rho v^{2}+\rho gh=constant$ $P_{1}+\frac{1}{2}\rho v_{1}^{2}+0=P_{2}+\frac{1}{2}\rho v_{2}^{2}+0-(2)$ (1)=>(2), $P_{1}+\frac{1}{2}\rho (1.4v_{2})^{2}=P_{2}+\frac{1}{2}\rho v_{2}^{2}$ $v_{2}=\sqrt {\frac{2(P_{2}-P_{1})}{0.96\rho }}$ ; Let's plug known values into this equation. $v_{2}=\sqrt {\frac{2(120\space Pa)}{0.96\times 1.3\space kg/m^{3} }}=13.87\space m/s$ (b) Flow rate = Av = $(0.07\space m^{2})(13.87\space m/s)=0.97\space m^{3}/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.