Answer
$9576.96\space N$
Work Step by Step
Let's take,
Pressure on the top of the wings = $P{1}$
Airspeed on the top of the wings = $v{1}$
Pressure on the bottom of the wings = $P{2}$
Airspeed on the bottom of the wings = $v{2}$
Let's apply Bernoulli's equation to the system.
$P+\frac{1}{2}\rho v^{2}+\rho gh=constant$
$P_{1}+\frac{1}{2}\rho v_{1}^{2}+0=P_{2}+\frac{1}{2}\rho v_{2}^{2}+0$
$P_{1}+\frac{1}{2}(1.29\space kg/m^{3})(62\space m/s)^{2}=P_{2}+\frac{1}{2}(1.29\space kg/m^{3})(54\space m/s)^{2}$
$P_{2}-P_{1}=598.56\space Pa$
Lift force = $\Delta PA=598.56\space Pa\times16\space m^{2}=9576.96\space N$