Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Problems - Page 279: 85

Answer

$11.2\space kg\rightarrow1.25\space m/s$ $21.7\space kg\rightarrow 0.645\space m/s$

Work Step by Step

Let's apply the principle of conservation of momentum for the system. $m_{1}u_{1}+m_{2}u_{2}=m_{1}V_{1}+m_{2}V_{2}$ $m_{1}u_{1}+m_{2}u_{2}=0$ $u_{2}=-\frac{m_{1}u_{1}}{m_{2}}-(1)$ Let's apply the principle of conservation of mechanical energy for the system. Kinetic energy + Potential energy = Constant $\frac{1}{2}m_{1}u_{1}^{2}+\frac{1}{2}m_{2}u_{2}^{2}+0=0+0+\frac{1}{2}kx^{2}$ $m_{1}u_{1}^{2}+m_{2}u_{2}^{2}=kx^{2}-(2)$ (1)=>(2), $m_{1}u_{1}^{2}+m_{2}(-\frac{m_{1}u_{1}}{m_{2}})^{2}=kx^{2}$ $u_{1}^{2}[\frac{m_{1}(m_{2}+m_{1})}{m_{2}}]=kx^{2}$ $u_{1}=x\sqrt {\frac{m_{2}k}{m_{1}(m_{1}+m_{2})}}$ ; Let's plug known values into this equation. $u_{1}=0.141\space m\sqrt {\frac{21.7\space kg(1330\space N/m)}{11.2\space kg(21.7\space kg+11.2\space kg)}}=1.25\space m/s$ Speed of the 11.2 kg block = 1.25 m/s From (1) $u_{2}=-\frac{(11.2\space kg)(1.25\space m/s)}{21.7\space kg}\approx-0.645\space m/s$ Speed of the 21.7 kg block = 0.645 m/s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.